If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=16x=7
We move all terms to the left:
2x^2-(16x)=0
a = 2; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·2·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*2}=\frac{32}{4} =8 $
| 3x-13=x-8 | | 2(3x+2)=5x-5 | | 40=2u=16 | | x^2+20x-240=0 | | 1/4x+8=1 | | 2a+1/5=7/6 | | 2.1=-4x+6.1 | | a^2-12=-3a | | (11x-5)+83=180 | | 6.1=-4x+6.1 | | 180=90+(2x-2) | | -4.5=1.5x-6 | | -6=1.5x-6 | | -9−2z=z | | 4(2)+y=18 | | x+(x-26)+90=180 | | 2x^2+38x-432=0 | | 5u+7-3(-5u-1)=u-1 | | (4x-11)=(x+46) | | -12d+39=-4d-17 | | 1/5n+4/3n=2 | | -6=-1.5x-3 | | 0=x+-10(1.5) | | 180=(4x-11)+(x+46) | | 16b+-16b−-13b=13 | | 0.44x=1 | | 153-w=293 | | 2x+8+3x-10=180 | | 4x4=64 | | 3=p=9p | | 3x-10+x+50=180 | | 11d-4d=14 |